Iterative algorithm for multi-valued pseudocontractive mappings in Banach spaces
نویسندگان
چکیده
منابع مشابه
Iterative Methods for Pseudocontractive Mappings in Banach Spaces
and Applied Analysis 3 Lemma 1 (see [1, 2]). Let E be a Banach space and let J be the normalized duality mapping on E. Then for any x, y ∈ E, the following inequality holds: x + y 2 ≤ ‖x‖ 2 + 2⟨y, j (x + y)⟩, ∀j (x + y) ∈ J (x + y) . (14) Lemma 2 (see [20]). Let {s n } be a sequence of nonnegative real numbers satisfying s n+1 ≤ (1 − λ n ) s n + λ n δ n , ∀n ≥ 0, (15) where {λ n } and ...
متن کاملConvergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).
متن کاملPPF dependent fixed point theorems for multi-valued mappings in Banach spaces
We prove the existence of PPF dependent coincidence points for a pair of single-valued and multi-valued mappings satisfying generalized contractive conditions in Banach spaces. Furthermore, the PPF dependent fixed point and PPF dependent common fixed point theorems for multi-valued mappings are proved.
متن کاملA General Iterative Algorithm for Nonexpansive Mappings in Banach Spaces
Let E be a real q-uniformly smooth Banach space whose duality map is weakly sequentially continuous. Let T : E → E be a nonexpansive mapping with F (T ) 6= ∅. Let A : E → E be an η-strongly accretive map which is also κ-Lipschitzian. Let f : E → E be a contraction map with coefficient 0 < α < 1. Let a sequence {yn} be defined iteratively by y0 ∈ E, yn+1 = αnγf(yn) + (I − αnμA)Tyn, n ≥ 0, where ...
متن کاملViscosity approximation methods for pseudocontractive mappings in Banach spaces
Strong convergence of implicit viscosity approximation methods for pseudocontractive mappings in Banach spaces Lu-Chuan Ceng a b , Adrian Petruşel c , Mu-Ming Wong d & Su-Jane Yu e a Department of Mathematics, Shanghai Normal University, Shanghai 200234, China b Scientific Computing Key Laboratory of Shanghai Universities, Shanghai, China c Department of Applied Mathematics, Babeş-Bolyai Univer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2010
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2010.07.020